DALI-15-100-400-F1P1

LED Intelligent Driver

- Dimming interface: DALI, Push Dim.
- PWM digital dimming, no alter LED color rendering index. •
- Standard DALI logarithmic dimming curve. .
- Dimming range: 0~100%, LED start at 0.1% possible. ٠
- Multiple current, wide voltage, compatible with a variety of LED lights. ٠
- Power factor > 0.99, Efficiency > 83% .
- Short circuit / Over-heat / Over load protection. .
- Class 2 power supply. Full protective plastic housing. •
- DALI bus standard: IEC62386-101, 102, 207, •
- ٠ Compliant with Safety Extra Low Voltage standard.
- Suitable for indoor environments.

110/

\F/

M/

Over-heat

Protection

\M/

SELV

P F

>0.99

Main Characteristics

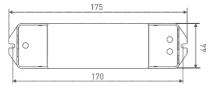
DALI

Dimming Interface:	DALI (IECé	52386), Pus	sh Dim			Output Powe	er Range:	0.3W~15W				
Input Voltage Range:	100-240Va	c ±10%				Current Acc	uracy:	±3%				
Frequency:	50/60Hz					Non-load Ou	tput Voltage	58Vdc				
Input Current:	115Vac≤0	.20A, 230Va	ac≤0.10A			Dimming Ra	inge:		0~100%, LED start at 0.1% po			
Power Factor:	PF>0.99/1	15Vac , PF>	0.95/230Va	c, at full lo	ad	PWM Freque	ency:		≪4KHz			
THD:	<12% at 1	15Vac, <15%	6 at 230Vac	: (full load)		Working Ten	nperature.:		tc: 75°C ta: -30°C ~ 55°C			
Efficiency:	>83%					Working Hu	midity:	20 ~ 95%RH, non-condensing				
Inrush Current(typ.):	Cold start	20A@230V	ас			Storage Terr	np., Humidit	-40 ~ 80°C, 10~95%RH				
Control Surge Capability	: L-N: 1kV					Temp. Coeff	icient:		±0.03%/°C(0-50°C)			
Leakage Current:	<0.5mA/23	80Vac				Vibration:			10~500Hz, 2G 12min./1cycle, p			
Operating Voltage:	3~54Vdc								for 72min. each along X, Y, Z a			
Output Current :	100mA	120mA	150mA	200mA	250mA	300mA	350mA	400mA				
Output Voltage :	3-54V	3-54V	3-54V	3-54V	3-54V	3-50V	3-42V	3-38V				
Output Power :	0.3-5.4W	0.4-6.5W	0.5-8.1W	0.6-11W	0.8-13.5W	0.9-15W	1.1-14.7W	1.2-15.2W	w			

Protection

Over-heat Protection:	
Over Load Protection:	

Shut down the output when PCB temp.≥110°C, auto recovers when temperature back to normal. When O/P voltage exceed its range, O/P current declines, auto recovers when the load is reduced.


Short Circuit Protection: Shut down automatically if short circuit occurs, auto recovers after faulty condition is removed.

Others

Dimension:	175×44×30mm(L×W×H)
Packing:	178×48×33mm(L×W×H)
Weight(N.W.):	160g±10g

Dimensions

Unit: mm

Withstand Voltage:	I/P-0/P: 3750Vac;
Isolation Resistance:	I/P-0/P: 100MΩ/500VDC/25°C/70%RH
Safety Standards:	IEC/EN61347-1, IEC/EN61347-2-13
EMC Emission:	EN55015, EN61000-3-2 Class C, IEC61000-3-3
EMC Immunity:	EN61000-4-2,3,4,5,6,8,11 EN61547

A

Multiple

Cun

A Rotts

3W~15W
3%
3Vdc
100%, LED start at 0.1% possible.
4KHz
: 75°C ta: -30°C ~ 55°C
) ~ 95%RH, non-condensing
0 ~ 80°C, 10~95%RH
).03%/°C(0-50°C)
-500Hz 2G 12min /1cycle period

period axes

www.ltech-led.com

0.3~15W 100~400mA 3~54Vdc

LTECH/US

CE

Over Load

Protection

Dimmable:

0.1%-100%

0

A

Short Circuit

Protection

LTECH

Connections

DALI Connection 1 2 DM DA2 + -Ν DALI 0~100% Dimming Push Connection Dim 1 2 DAI DAU LED N L Push Dim 0~100% Dimming Short press to on/off, long press to dim. The dimming interface priority: First DALI, next Push Dim.

Push Dimming

• On/off control: Short press.

- Stepless dimming: Long press.
- With every other long press, the light level goes to the opposite direction.
- Dimming memory: Brightness will be the same as previously adjusted when turning off and on again.

TEC

Reset Switch

LED Current Selection

Quick options: DIP switch for 8 optional currents' quick selection (see the table below).

	土土王	上て上	LTT.	주 쇼 쇼	$T \triangleq T$	TTL	TTT	T	
100mA/ISET	120mA	150mA	200mA	250mA	300mA	350mA	400mA	ON	OFF
3-54V	3-54V	3-54V	3-54V	3-54V	3-50V	3-42V	3-38V		

* After current setting by DIP switch, power off and then power on to make the new current effective.

🛠 E.g. LED 3.2V/pcs: 3-54V can power 1-16pcs LEDs in series, 3-38V can power 1-11pcs LEDs, the max quantity of LEDs in series will be subject to the actual voltage of LED.

Advanced options: Dial DIP switch down 🛓 🛓 , connect ISET port with resistors of different values to set up any current from 100mA to 400mA (specific resistor values refer to the table).

+														
Image: Second		Connecting ISET with resistors can obtain the following typical currents.												
	Current(mA)	100mA	125mA	150mA	175mA	200mA	225mA	250mA	275mA	300mA	325mA	350mA	375mA	400mA
1211 33 3333	Resistor(KΩ)	00	75 30 KΩ	36 70 KΩ	26 90 KΩ	16 56 KΩ	15 30 KΩ	9 10 KΩ	6 93 KΩ	5 94 KΩ	3 38 KΩ	2 95 KΩ	1 10 KΩ	ο κΩ

2

Connect t œsistor

